If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7x2 + 6x + 15 = 0 Reorder the terms: 15 + 6x + 7x2 = 0 Solving 15 + 6x + 7x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. 2.142857143 + 0.8571428571x + x2 = 0 Move the constant term to the right: Add '-2.142857143' to each side of the equation. 2.142857143 + 0.8571428571x + -2.142857143 + x2 = 0 + -2.142857143 Reorder the terms: 2.142857143 + -2.142857143 + 0.8571428571x + x2 = 0 + -2.142857143 Combine like terms: 2.142857143 + -2.142857143 = 0.000000000 0.000000000 + 0.8571428571x + x2 = 0 + -2.142857143 0.8571428571x + x2 = 0 + -2.142857143 Combine like terms: 0 + -2.142857143 = -2.142857143 0.8571428571x + x2 = -2.142857143 The x term is 0.8571428571x. Take half its coefficient (0.4285714286). Square it (0.1836734694) and add it to both sides. Add '0.1836734694' to each side of the equation. 0.8571428571x + 0.1836734694 + x2 = -2.142857143 + 0.1836734694 Reorder the terms: 0.1836734694 + 0.8571428571x + x2 = -2.142857143 + 0.1836734694 Combine like terms: -2.142857143 + 0.1836734694 = -1.9591836736 0.1836734694 + 0.8571428571x + x2 = -1.9591836736 Factor a perfect square on the left side: (x + 0.4285714286)(x + 0.4285714286) = -1.9591836736 Can't calculate square root of the right side. The solution to this equation could not be determined.
| x+1+3x+12+3x+12+x+1=86 | | 3/n-18=1/4n-4 | | -12m+7m=11-46 | | 4.7+3.2x=x+52.7 | | 20x+x+2+20x+x+10x+x+5+10x+x=124 | | 4b-a-b+a= | | 0.94(x-2)=0.02(6x-3)-0.02 | | 3t+6t=17+4-12 | | 7.5+1.2(x)=x+8.57 | | 5(1+6p)-5=-5p | | x+2=99 | | 7x^2=39x-20 | | 34m+4= | | -6(3x-8)=-6.3 | | -127+11x=71 | | 5(3x-2)=4(x+5)+14 | | 6x^2+6=20x | | 27a^2-42a-5=0 | | 50*3.14= | | -4-5=1-5x+6x | | 6x-6y=17 | | 25.6=4y | | 11p-5=18 | | 23=-19+6x | | 8-5n+3n=76-100 | | 4x-2=2(x+1)+6x | | (3x+12)=-4x-10 | | 2x^2-2=144 | | 0=-16t^2+2.4t+0.075 | | x^2+2-9=0 | | 2+0.54t=5.5 | | 4x-5=10x+25 |